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LETTER TO THE EDI'L'OR 

Diffusion in momentum space for systems in a random 
time-dependent electric field: the 11) hydrogen atom 

J C Florest 
Department of Physics, Purdue University. West Lafaycue, IN 47907, USA 

Received 5 Februaly 1992. in final farm 1 April 1992 

AbsIrwL I t  i s  argued that dilfusion in momcnlum space exists for ID quanlum systems 
( H ,  = p2 + V ( x ) )  in a random aiernal electric wavefield ( F b ( i ) z ) .  In Ihe high-field 
regime, a dillusion type cqualion is b u n d  explicitly for the probabilily density. In this 
regime. dilfusion i s  a conrcqucnce of rmdomizdorz in the quanlum system. Parlicularly, 
this result is  also valid for llie ID hydrogcn atom in a random wavefield. So the 
interference phenomenon, which is a lypical property in quantum systems. is dislurbed 
by randomimiion. This could lhave imporlant inferences in the phenomenon known as 
quantum suppression of classical chaos where inlrrfcrcnce gives dynamical localizalion. 

The one-dimensional (ID) hydrogcn atom in the presence of microwave frequency 
radiation is the object of great intercst because of the  dynamical localization of chaos 
in quantum systems 11, 21. So it sccms that quantum mechanics has a suppressive 
effect on classical chaos. In fact, the hydrogen atom in a microwave field is a 
complex system and it is only at high lrequcncics that this phcnomenon occurs. A 
more simple system which displays suppression of chaos by quantum effect is the 
so-called kicked rotator. Classically, the kickcd rotator beomcs chaotic above a 
critical threshold in the external force (the amplitudc of the kick). So the energy 
becomes unbounded in time with a diffusive behaviour. .On the other hand, it has 
been conjectured that in thc quantum model the encrgy is bounded in time, outside 
of the resonance regime, which is the oppositc of the  classical case 131. At present, a 
clear explanation of the divergence betwccn the classical and quantum systems does 
not exist. So, quantum suppression of classical chaos has important implications in the 
foundations of quantum mechanics and its rclation to classical mechanics. Also, it is 

and observations of systcms which are classically intcgrable. 
A qualitative (partial) accord hetwcen the classical and quantum descriptiom 

can be found when noise is assumed in the quantum kicked rotator. In different 
random quantum models [a], a difl'usivc hehaviour at the cnerby could be found 
in partial accord with the classical systcm. Ncvcrthclcss, this accord is obtained by 
considering randoniizalion in the quantum systcm whilc the classical systcm is itself 
random. Moreover, no diffusion thrcshold has yet bcen found. However from the 
above results, the following idca can hc  suggested: if we assume rhar the Hunliltonian 
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of ihe microscopic sysrent (lhe quunlrrni roruior) cunnoi be known aacily ihen a (pariiul) 
qualilaiive accord with ihe cluvsicul sysieni cun be found. A similar idea, to explain 
irreversibility in the microworld, has been used in [7]. 

In this work it is argued that diffusion, in momentum space, exists when random- 
ization is considered on a quantum system with a time-variating electric field (for 
example the ID hydrogen atom in a random microwave field). Explicitly we consider 
the Hamiltonian 

H = H , - ~ b ( t ) F z  (1) 

H ,  = P? + V(z)  

where the Hamiltonian 

(2) 

has a discrete spectrum. F is the amplitude of the electric field and b ( t )  is a time- 
function which can be either periodic or random. 

The model where 6( t) is a periodic Sunction and V (  z) = -e2 /x ,x  > 0 is known 
as the ID hydrogen atom which displays quantum suppression of classical chaos in 
the high-frequency regime. More inlormation can be found in [2]. 

In our case we consider b( 1 )  related to a series of (square) pulses. We assume 
that every pulse has random height and it is argued that diffusion, in momentum 
space, exists because of randoniizuiion. 

The Schrodinger equation related to the Hamiltonian (1) is given by ( f i  = 1) 

The important point for us is that equation (3) cdn be transformed to another equa- 
tion where the time-dependence comes directly in the potential V(z) [SI. 'Ib see 
this, we consider the unitary transformation T ,  given by the expression 

where the quantities a , p  and y are related to 6( 1 )  by 

So, using the transformation (4) in equation (3) we have 

$ + V (  2 - y(  / ) ) d l  I - $ =  -- . a  a2 

at ax? 
where explicitly 

Calulations on the I D  hydrogen atom, with a strong dctcrministic time-dependent 
external field and using the above method can be found in 181. 
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In the case of a periodic wavelicld b ( r )  = c o s l / r ,  the variations of y are 
bounded in time namely 

- F r Z  < y( t )  < I.'? whcn b = cos 1 f T .  (8) 

This relation suggests that we could considcr a simplificd model where the parameter 
y is related to square-pulses. Rundoniizulion is provided by the variation in height of 
each pulse. Explicitly we assume 

y ( 1 )  = F r 2 ~ [ ; { 0 ( t  - j r )  - O(1  - ( j  + 1)s)) 
3 

- p j { O ( t - ( j + 1 ) r ) - O O ( t - ( j + 2 ) r ) )  j = 0 , 2 , 4 ,  . . .  (9) 

where O(t)  i s  the step-function and F j , p j  are random independent quantities for any 
j with dispersion U and avcrage equal to onc 

U2 = [ g ]  = [pj] [C;] = [ , L . ]  J = 1. (10) 

So y takes consecutively the values +Fr2C, a n d ' - F r * p , ,  or 

We note that the deterministic case e, = p j  = 1 is related to the periodic squarc- 
puise with period Sr .  

Because y is a constant between j r  < I < ( j  + 1) < T and (j + 1)r < 1 < 
( j  + 2 ) ~ .  the evolution operator U, (bctwccn two consccutivcs pulses) is 

(12) 
U ,  = e i ( p ' + V ( r - I ; ' r ~ ( , l ) ~ C i ( p ' + V ~ r + ~ ~ 2 1 1 , ) ~ ~  

J 

which is a random operator and can bc writtcn as 

(13) U ,  = . i F ~ ' ( j p  e e  i H 0 r  - iFr ' ( ( ,+ l l j )Dei l lorCiFTZlr jp  
J 

At this point is interesting to note thc similarity betwcen this operator and another 
related to the kicked rotator. In fact in t hc  periodic case, the abovc evolution 
operator gives a jformai) tight-binding type cquaiion For ihe wavefunction because of 
the analogy of this operator with anothcr ol' the periodic kicked rotator. 

We now consider the case wherc < , . p j  arc random quantitics in the model 
defined above. We found that in the limit whcre F r 2  is sulficiently large, diffusion 
in the momentum space exists because of rrmdoniizalion. 

The time-evolution, at thc dcnsity operator p, from 1 = j r  to 1 = (j + 2 ) r  is 
given by 

$+2 = u;/2uJ-~ (14) 

where the random unitary operator U, was dcfincd above. 
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The idea is to show that the evolution of the average-density operator, is given 
by a diffusion type equation in the limit where Fr' is sulficiently large. To see this 
we use the  fact that in the momentum space representation (14) becomes 

(15) 

where 

J,, = ( ~ I e ' ~ " ' l s )  (16) 

and we have a sumation over k ,  , . . . , k4 because we assume that the system is in a 
great-box of length L namely (tl = I )  

12 E z. (17) 
11 1 

p =  - A p =  - L L 

In the approximation Fr'u >> L, the sample-averaging a t  the  random phase 
becomes proportional to or 

[.'F'='E, 1 - %,o when F r ' D p u  >> 1 (1% 

where the symbol [. . .] denotes sample-average on the random quantities. From (15) 
and (18), the  diagonal elements o l  p a re  relatcd a t  different times by 

where 

I G,, I?= c 
and 

I G,,, I?= 
'I 

Condition (21) gives the normalization condition ~ , ~ [ & ]  = 1 Cor any time. 

initial state (j = 0) is 1 p), with ( p  p) = I, thcn from (19) wc have 
The  evolution equation (19) has an important property: if we assume that the 

[&I 4 G,, I 2 J  . (22) 

Namely, the probability of finding the systcm in thc initial statc 1 p) becomes expo- 
nentially smaller with timc. SO we can define, for instance, the 'relaxation-time' of 
the system rT 
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Expression (23) is general in the sense that we have no  restrictions on the matrix 
elements (16). We recall that in (22), I G P p  I< 1 .  

Now, we want to consider systems where the transition matrix, in momentum 
space, involves only nearest-neighbour elements. Namely we assume that 

I G,, Iz= (1  - 2D)6,, ,  + D6,,,+1 + D6,,,-1 

[PA 1 - [P:,] + 2D{[P)pPl+ll + [P)pp- ,I  - 2[1+6,11 

(24) 

where D is a positive quantity. Using (24), equation (19) becomes 

(25) t2 - 

which is a discrete diffusion equation. We remark on the similarity of (25) to the  
continuous diffusion equation a l p  = L)8,,p. 

The sample-averaging, for the momentum, is given by 

P P 

namely, a diffusive behaviour exist in momentum space. 
So condition (18) gives us the difl‘usion type equation (25) for the probability 

density in momentum space. We notc that the diffusion equation (25) is obtained 
in :he 

system when (18) holds. I f  (IS) is not satisficd, then the behaviour in momentum 
space is unknown neverthelcss, because the similarity of the evolution equation (15) 
with another of the  random kicked rotator [4], it also seems possible that here 
( F T * u ~ ~  - 1) diffusion exists bccause of rrrndontizolion hut the diffusive behaviour 
is asymptotic in time. 

We have conjectured that for thc random model, diffusion exists in momentum 
space when the condition 

iii one-s;ep (j - j +. 3) (jiecfiiscfle bchai;ioiii is i2pi(j!y 

F T ? U A ~  >> 1 (27) 

is assumed. The model is a system with a discrete spectrum (Hamiltonian H0j  in a 
random time-dependent electric field. The amplitude of this field is F and the period 

the length of the box where the system / I ,  is operating. 
The condition (27) gives us a diffusion type equation, in one-step (j - j + 2 ) ,  in 

momentum space (25). 
Outside of regime (27) (when FT‘uA - l ) ,  the behaviour is unknow (for me) 

hut  because of the similarity between the random time evolution (15), for the density 
matrix, and another of the random kicked rotator 141 it seems possible that diffusion, 
related t o  disorder, also exists h e r e .  

Finally, we remark that the hydrogcn a tom in a wavefield, is a particular case 
of the general Hamiltonian (1). So it  seems possible that dynamical locali7ation, for 
the hydrogen atom in a wave field, could be broken by rundontizution. So it seems 
that quantum suppression of classical chaos does n o t  exist when randomization is 
considered in the quantum model. 

T :  !!! (27)> Cr i S  the diS?CrSiO!! of !he random C!Udnri!iCS (10) and a? = I / &  With L, 
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